Surjective isometries between unitary sets of unital JB⁎-algebras

نویسندگان

چکیده

This paper is, in a first stage, devoted to establishing topological–algebraic characterization of the principal component, U0(M), set unitary elements, U(M), unital JB⁎-algebra M. We arrive conclusion that, as case C⁎-algebras,U0(M)=M1−1∩U(M)={Ueihn⋯Ueih1(1):n∈N,hj∈Msa∀1≤j≤n}={u∈U(M): there exists w∈U0(M) with ‖u−w‖<2} is analytically arcwise connected. Actually, U0(M) smallest quadratic subset U(M) containing eiMsa. Our second goal provide complete description surjective isometries between components two JB⁎-algebras M and N. Contrary C⁎-algebras, we shall deduce existence connected which are not isometric metric spaces. also establish necessary sufficient conditions guarantee that isometry Δ:U(M)→U(N) admits an extension linear N, always true. Among consequences it proved N Jordan ⁎-isomorphic if, only their spaces mapping unit element U0(N). These results setting obtained by O. Hatori for C⁎-algebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surjective Real-Linear Uniform Isometries Between Complex Function Algebras

In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$,  where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...

متن کامل

Isometries Between Matrix Algebras

As an attempt to understand linear isometries between C∗-algebras without the surjectivity assumption, we study linear isometries between matrix algebras. Denote by Mm the algebra of m×m complex matrices. If k ≥ n and φ : Mn → Mk has the form X 7→ U [X ⊕ f(X)]V or X 7→ U [X t ⊕ f(X)]V for some unitary U, V ∈ Mk and contractive linear map f : Mn → Mk, then ‖φ(X)‖ = ‖X‖ for all X ∈ Mn. We prove t...

متن کامل

Surjective Isometries on Grassmann Spaces

Let H be a complex Hilbert space, n a given positive integer and let Pn(H) be the set of all projections on H with rank n. Under the condition dimH ≥ 4n, we describe the surjective isometries of Pn(H) with respect to the gap metric (the metric induced by the operator norm).

متن کامل

Jordan ∗−homomorphisms between unital C∗−algebras

Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...

متن کامل

Characterization of Pseudo n-Jordan homomorphism Between unital algebras

Let A and B be Banach algebras and B be a right A-module. In this paper, under special hypotheses we prove that every pseudo (n+1)-Jordan homomorphism f:A----> B is a pseudo n-Jordan homomorphism and every pseudo n-Jordan homomorphism is an n-Jordan homomorphism

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2022

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2022.02.003